On the arithmetical rank of the edge ideals of forests
نویسنده
چکیده
We show that for the edge ideals of a certain class of forests, the arithmetical rank equals the projective dimension.
منابع مشابه
Arithmetical Rank of the Cyclic and Bicyclic Graphs
We show that for the edge ideals of the graphs consisting of one cycle or two cycles of any length connected through a vertex or a path, the arithmetical rank equals the projective dimension.
متن کاملA note on the edge ideals of Ferrers graphs
We determine the arithmetical rank of every edge ideal of a Ferrers graph.
متن کاملOn the arithmetical rank of an intersection of ideals
We determine sets of elements which, under certain conditions, generate an intersection of ideals up to radical.
متن کاملArithmetical Rank of Toric Ideals Associated to Graphs
Let IG ⊂ K[x1, . . . , xm] be the toric ideal associated to a finite graph G. In this paper we study the binomial arithmetical rank and the Ghomogeneous arithmetical rank of IG in 2 cases: (1) G is bipartite, (2) IG is generated by quadratic binomials. In both cases we prove that the binomial arithmetical rank and the G-arithmetical rank coincide with the minimal number of generators of IG.
متن کاملMatchings in simplicial complexes, circuits and toric varieties
Using a generalized notion of matching in a simplicial complex and circuits of vector configurations, we compute lower bounds for the minimum number of generators, the binomial arithmetical rank and the A-homogeneous arithmetical rank of a lattice ideal. Prime lattice ideals are toric ideals, i.e. the defining ideals of toric varieties. © 2006 Elsevier Inc. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006